

IronPython: Bringing the
dynamic world to the CLR

Carlos Alberto Cortez
calberto.cortez@gmail.com

FOSDEM, Brussels, Feb/2012

mailto:calberto.cortez@gmail.com

Overview

● Mono/CLR
● Python
● IronPython

● And how it relates to
CPython/Mono

Demo Time!

mono Cross platform,
modern development
framework

● Garbage collection
● JIT compilation
● Thread management
● Desktop and Web support
● Huge class library
● Multi language support

C# High level, multi
paradigm, object oriented,
evolving language

2.0 Generics/Iterators/Anon. methods
3.0 LINQ/Lambdas

4.0 Dynamic support
5.0 Asynchrous methods

So why use other
programming languages,
given that C# is getting

better and better?

Paradigm

Dynamic

Functional
Scripted

Metaprogramming
Low level

Logic

Static typing

python General purpose,
multi paradigm, clear-syntax
focused, dynamic language

(or the python.org definition:
“Language that lets you work
more quickly and integrate

your systems more
effectively”)

python paradigms

dynamic
object oriented
metaprogramming

functional
scripted

* extra extensions

python zen

Minimalist philosophy
and readibility. Avoid
the “There's more
than one way to do it”

python goodies

New modules in Python/C/C++

Web development

Embedded in several applications

Less boilerplate than other lang.

Complete standard library

Introspection

python hello world

print “Hello World”

python hello file

with open ('spam.txt', 'w') as file:
 file.write ('Spam and eggs!')

python OSS

PyGtk/PyQt
Bazaar
BitTorrent
Mercurial
Ubuntu Software Center
YUM
Mailman
Twisted

IronPython Open source
implementation of Python on
top of CLR

Created by Jim Hugunin, who had previously
created Jython (Python on top of Java),

while trying to write an article called
“Why .NET is a terrible platform for

dynamic languages”

IronPython Highlights

Mantained by Microsoft until version 2.7
Released under Apache 2.0 licence

Entirely written in C#
Running on top of a dynamic platform

Same syntax as the standard
implementation

Run python modules Run IL assemblies

A script using the standard
Python API

import socket

HOST = '127.0.0.1'
PORT = 50007
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((HOST, PORT))
s.listen(1)

conn, addr = s.accept()
print 'Connected by', addr

data = conn.recv(1024)
conn.send(data)
conn.close()

import clr
clr.AddReferenceByPartialName ("gtk-sharp")

from Gtk import *

class MainWindow (Window):

 def __init__ (self, Title):
 vbox = VBox ()
 self.Add (vbox)

 b = Button (Label = "Click me")
 vbox.PackStart (b, True, True, 0)

 vbox.ShowAll ()

 def OnDeleteEvent (*args):
 Application.Quit ()

A script using Gtk#

IronPython Two worlds

Python
Iron

Python
CLR

DLR Dynamic Language
Runtime

Set of services for dynamic languages to
run and interop with the CLR

● No lexer/parser, but expression trees
● Dynamic type system
● Dynamic code generation
● Interoperation with static typed langs.
● Hosting API

DUCK TYPING
When I see a bird that

walks like a duck,
swims like a duck,

And quacks like a duck, I
call that bird a duck

DUCK TYPING

def DoQuack (duck):
 duck.Quack ()

class Duck (object):
 def Quack (self):
 “duck quacks!”

class AnotherBird (object):
 def Quack (self):
 “Not-a-bird quacks!”

DoQuack (Duck ())
DoQuack (AnotherBird ())

IronPython What for?

Embedded
(Scripting)

Unit
Testing

Prototyping+ +

In my experience, it's very helpful to
create models in a dynamic language,
because there is a very low barrier to

redesigning as you learn. You're able to
quickly try out your ideas.

Guido Van Rossum

Hosting Simple expression

using System;
using IronPython.Hosting;

class MainClass
{

public static void Main (string[] args)
{

var engine = Python.CreateEngine ();
var source = engine.CreateScriptSourceFromString ("3.1416 * 2.0 - 13.8");
double res = source.Execute<double> ();

Console.WriteLine (res);
}

}

Hosting Simple expression 2

class MainClass
{

public static void Main (string[] args)
{

var engine = Python.CreateEngine ();
var scope = engine.Runtime.CreateScope ();
scope.SetVariable ("p", new Product () { Name = "MonoTester" });

var source = engine.CreateScriptSourceFromString ("print p.Name");
source.Execute (scope);

}
}

public class Product
{

public string Name { get; set; }
public int Id { get; set; }

}

Hosting Dynamic
using System;
using IronPython.Hosting;

class MainClass
{

public static void Main (string[] args)
{

var engine = Python.CreateEngine ();
var runtime = engine.Runtime;
dynamic pythonmod = runtime.UseFile ("/tmp/pysample.py");

pythonmod.Simple ();
}

}

def Simple ():
 print “hello from Python!”

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

