

or

Web Objects Kitchen
a web development framework

(sort of.)

WHY?WHY?WHY?WHY?● In 1999 we were using Python (Zope 2)
● In 2004 we were using Python (Twisted/Nevow)
● In 2005 we were pushing Python to its limits...
● ...or was Python pushing us to ours?

“If you can't code it in Perl, why don't you try C#?”

– lupus, at webb.it 2004

ASP.ASP.
 NOT NOT
ASP.ASP.
 NOT NOT
● C# (2.0) seemed to be a great language
● At that time ASP.NET was the only option, but:

● No support for server-side DOM
● Made it easy to generate invalid HTML
● URL mapping to code (“routing”) was inexistent
● Bad support for multiple themes and languages
● Templates allowed for lots of side-effects

WOK1WOK1WOK1WOK1No plan (bad!) but we did know what we wanted:
● multiple languages (cookies or headers or URLs)
● themes: pages are built out of localized XML

templates and in-code DOM fragments)
● flexible URL routing: a single resource (URL) is

mapped to multiple components that
collaborate to build the page

● page transactions

 ONEONE
WEEKWEEK
 ONEONE
WEEKWEEK
It took around one week to write WOK-1,

then we started using it...

WOK2WOK2WOK2WOK2In 2009 we started WOK-2 development (and this
time, we had a plan):
● abstract WOK application from hosting
● “componentize” everything
● MonoDevelop support
● stuff from WOK-1: templates, skinning, server-

side DOM, page transactions, data validation.

Yes, I now that everytime one writes “componentize” a kitten is killed but I quoted it, OK?

LAYERSLAYERSLAYERSLAYERS

FLOWFLOWFLOWFLOWWhat happens on incoming HTTP requests?
● “URL processing” - extract information
● “URL mapping” - register components
● “Resource running”

● Initialize registered components
● Run resource workflow using events
● Send result back to client

APPAPP
 CONF CONF
APPAPP
 CONF CONF

<app xmlns="http://initd.org/ns/wok-1.0"

 xmlns:wokc="clr-namespace:Wok.Core;assembly=Wok.Core"

 xmlns:wokp="clr-namespace:Wok.Core.Processors;assembly=Wok.Core"

 xmlns:profiling="clr-namespace:WokRecipes.Profiling;assembly=WokRecipes.Profiling"

 xmlns:app="clr-namespace:VentanaMice.Web;assembly=VentanaMice">

 <authentication-managers>

 <profiling:AuthenticationManager CookieName="ventana.mice.auth"

 CookieKey="df096339d64e7cee4ecb357726539647"/>

 </authentication-managers>

 <url-processors>

 <wokp:ActionView/>

 <wokp:Rest/>

 <wokp:VirtualHost/>

 </url-processors>

 <url-mappers>

 <app:Mapper/>

 </url-mappers>

</app>

 URLURL
MAPPINGMAPPING
 URLURL
MAPPINGMAPPING

● You can have as many mappers as you like.
● A builtin declarative XML-based mapper:

 <map xmlns="http://initd.org/ns/wok-1.0" ...>

 <path pattern=".*" mode="ContinueOnMatch">

 <woku:SkinService DefaultTheme="tutorial"/>

 </path>

 …

 <path pattern="^/(.+)$">

 <wokc:StaticFile Path="$1"/>

 </path>

 </map>

http://initd.org/ns/wok-1.0

PLUG!PLUG!PLUG!PLUG!Components manage everything, from database
connections to HTTP response construction. We
have many builtin components:
● HtmlTemplate, JsonTemplate, …
● StaticFile, DynamicFile, StreamingFile
● WokDbConnection, ExceptionSkin, ...

Recipes are collections of components and a
mapper, e.g., login, change/recover password,
manage account.

RUN!RUN!RUN!RUN!Components register for Resource events during
their Initialize() phase. And here are the events:
● TransactionBegin

● Authorize (component can redirect)

● Prepare

● Validate

● Process (component can redirect)

● TransactionEnd/TransactionAbort

● Render (no writes here)

● SendPage

CODECODECODECODEFeatures better demoed in code:

● File system skinning
● Declarative templates with data stacks
● GET & POST data validation
● Data proxies

git://luna.dndg.it/public/wok-2

<fog@initd.org>

Currently working on:

●MonoDevelop integration

●Component caching

●Profiling, Reporting and CMS recipes

mailto:fog@initd.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

