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Before we begin

This talk contains crude language, and also 
cats.



  

 

Jo Shields
FOSDEM 2011
Brussels, Belgium

Mono packaging in 
Debian and Ubuntu – 
why we're always 
right



Your pilot for this flight

● directhex@apebox.org 

● directhex on Twitter

● http://apebox.org 

● Debian Developer

● Ubuntu MOTU



Stuff in this talk
● dpkg versus RPM (and 

other constraints)

● What we do that others 

don't

● How that stuff makes us 

super awesome

● Where we suck (and why 

it's totally not our fault)

● How to write flamebait 

talk titles



Wibbly-wobbly, timey-wimey 
stuff

● Mono's been in Debian since April 

2002: version 0.13

● That's longer than openSUSE (0.30 in 

SuSE Professional 9.1, nothing in 9.0)

● Mono's been in Ubuntu since Oct 

2004: version 1.0.1



A word on Debian packages

● RPM is much more sophisticated in 

some places

● And pretty dumb in others

● Some of the things we do wouldn't 

be possible with an RPM distribution



Basic packaging structure

● Packages have:

 A name

 A version

 Relationships with other 

packages

 Other metadata



Where RPM is better

● RPM allows sophisticated 

dependencies

● Not only on packages, but also:

 Assemblies

 Files

 Versioned symbols

 And more



Where dpkg is better

● debconf configuration system allows 

packages settings to be altered 

during install

● preinst/prerm/postinst/postrm allow 

scripts on install/removal (e.g. 

regenerate monodoc search index)



Working around the 
constraints

● dpkg only has names and versions 

on packages, so we need to handle 

ABI etc in package names, not via 

RPM's sophisticated assembly 

dependencies

● Works for us – but needs extra care 

taken to avoid problems



Is dpkg or RPM inherently 
better?



What has 9 years told us?

● Get it right, or it'll bite you down the 

line

● All the weird things we do come from 

experience.



What “weird stuff?”

● Chop everything into teeny pieces

● Build the world against only ONE classlib

● Override the compiler in the build system

● Use funny package names and install 

locations

● Strip all your useful things out of source 

tarballs



mono.tar.bz2 and its 103 
children

● Almost one package per 

assembly

● Only required 

assemblies ever 

installed



Does that REALLY help?
● openSUSE 11.3

● GNOME desktop

● Mono removed

● 3.6 gig used

● Ubuntu 10.10

● GNOME desktop

● Mono removed

● 2.9 gig used



Does that REALLY help? pt2
● 3.6 gig used

● +70.1M for 

Tomboy

● 2.9 gig used

● +22.7M for 

Tomboy



Does that REALLY help? pt3
● 3.6 gig used

● +38.0M for 

gbrainy

● 2.9 gig used

● +21.3M for 

gbrainy



Does that REALLY help? pt4
● 3.6 gig used

● +70.1M for 

Banshee

● 2.9 gig used

● +41.0M for 

Banshee



Does that REALLY help? pt5
● 3.6 gig used

● +76.0M for all 3

● 2.9 gig used

● +49.8M for all 3



Does that REALLY help? 
Clearly.



33% better? You guys are 
unbeatable!



Notice how Banshee was 
huge compared to the 

others?



What does Banshee need 
that the others don't?



WCF? System.Web? Bollocks.



Stuff in blue & red? Throw 
Gabriel Burt at them!



Result?
● Banshee:

41.0M → 31.5M

● All three:

49.8M → 40.6M

47% sm
aller th

an openSUSE!

Holy crap!



Building the world against 
2.0

● If an app uses 2.0, and a lib uses 1.0, you 

need two copies of many libs

● So rebuild all 1.0 libs with gmcs

● Works great



Single classlib downsides
● 1.0-only non-distro apps 

need a hug to run

● Can no longer build 1.0 

apps using distro libs (but 

we keep core Mono 1.0 

libs available)



mcs, gmcs, dmcs, and mono-
csc

● C apps use “gcc”, not “gcc-3.4” or 

“gcc-4.3”

● Makes it easy to rebuild the world

● Mono didn't have this

● mcs for 1.0, gmcs for 2.0, dmcs for 

4.0

● Except on 2.8.x where mcs is 2.0



Wait, mcs changed?

● It gets better...

● “al” was 1.0, now 4.0. See also 

“resgen”

● An old 1.0 app using “mcs” and 

“resgen” during build will break on 

2.8+

● We predicted and avoided this in our 

2.0 package (November 2008)



The Debian solution

● al1, al2, where al is a symlink to default

● resgen1, resgen2, where resgen is a symlink to 

default

● etc

● mcs, gmcs, where mono-csc is a symlink to 

default

● Was meant to be just “csc”, but Chicken 

Scheme Compiler took it first



So how does that help 
rebuilds?

● Update symlinks in “mono” package 

to be 4.0, not 2.0

● No-change rebuild of, e.g., F-Spot

● Finished. Nap time!



Late breaking news (2011-01-
20)

● Mono 2.10 now has a master 

compiler command, “mcs”, which 

can target anything. It's based on 

IKVM.Reflection

● Yay



What else?

● Package names include the 

ABI

● But you compile against an 

API, not an ABI

● For easy rebuilds, we need 

unversioned “devel” 

packages



An example

● If FooBarSharp produces FooBar.dll 

2.3, it goes in libfoobar2.3-cil

● If it comes with a pkg-config file 

foobar-1.0.pc, it goes in libfoobar1.0-

cil-dev

● Consumer app just build-depends on 

mono-devel and libfoobar1.0-cil-dev



An example pt2

● FooBar.dll goes into /usr/lib/cli/FooBar-2.3/

● GAC links are done at install time by dpkg

● Install-time gacinstall allows installing into 

multiple runtimes' GAC

● Portable.NET (lulz), or parallel install Mono in 

/opt. Or a Linux port of .NET Micro! Whatevs. We 

don't judge.



-cil? Huh?

● .NET™ is a 

trademark

● Non-Mono 

frameworks might 

happen

● So neutral term 

from ECMA-335 

used



Stripping tarballs

● Mono deployment 

guidelines 

recommend bundling 

binary copies of 3rd  

party libs in your 

source releases



No no no no no no no no no.
● Binary bundles of OSS libs without source 

or version are no different from closed-

source libs

● No guarantee the binary actually even 

builds, or works

● No way to deal with security issues

● See HtmlAgilityPack in Mono



Bundle things, cause us strife

● Ever seen “+dfsg” in a package 

version? It means we had to strip 

non-Free content

● Even source bundles upset Debian 

FTP Masters, due to security burden

● Massive source bundle is the only 

reason Moonlight 2.x isn't in Debian



… so THAT weird stuff.

Still here?



The suck

● We're usually pretty slow at 

packaging new Mono releases. 

Especially major ones

● Largely a manpower issue – and right 

now, the Debian 6.0 freeze doesn't 

help

● Also, LOTS of debugging for every 

release



The suck pt2
● New packages (including new binary packages 

from existing source) can get blocked by Debian 

FTP Master for over a month

● Just plan around it. There's not much alternative.



The suck pt3

● Debian releases very rarely, so the 

included Mono versions need to last 

years

● Packaging changes can make 

backports difficult or impossible

● Price of progress!



Contrary to popular belief, 
we don't...

● Split packages based on patents or 

other crap



Contrary to popular belief, 
we don't...

● Care about the lunatic fringe's 

ramblings



We care about just one thing

● Making Mono apps available to our 

users

● And doing the best damn job we can

● Millions of people have our packages 

installed, so we're probably doing 

something right



And above all else

● Ruby packaging in Debian is in deep 

trouble due to upstream douchiness

● And next door's talk is “The Java 

Packaging Nightmare”

● Good packages require a 

responsive and helpful 

upstream, which we have



Any questions?
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