
1

Before we begin

This talk contains crude language, and also
cats.

Jo Shields
FOSDEM 2011
Brussels, Belgium

Mono packaging in
Debian and Ubuntu –
why we're always
right

Your pilot for this flight

● directhex@apebox.org

● directhex on Twitter

● http://apebox.org

● Debian Developer

● Ubuntu MOTU

Stuff in this talk
● dpkg versus RPM (and

other constraints)

● What we do that others

don't

● How that stuff makes us

super awesome

● Where we suck (and why

it's totally not our fault)

● How to write flamebait

talk titles

Wibbly-wobbly, timey-wimey
stuff

● Mono's been in Debian since April

2002: version 0.13

● That's longer than openSUSE (0.30 in

SuSE Professional 9.1, nothing in 9.0)

● Mono's been in Ubuntu since Oct

2004: version 1.0.1

A word on Debian packages

● RPM is much more sophisticated in

some places

● And pretty dumb in others

● Some of the things we do wouldn't

be possible with an RPM distribution

Basic packaging structure

● Packages have:

 A name

 A version

 Relationships with other

packages

 Other metadata

Where RPM is better

● RPM allows sophisticated

dependencies

● Not only on packages, but also:

 Assemblies

 Files

 Versioned symbols

 And more

Where dpkg is better

● debconf configuration system allows

packages settings to be altered

during install

● preinst/prerm/postinst/postrm allow

scripts on install/removal (e.g.

regenerate monodoc search index)

Working around the
constraints

● dpkg only has names and versions

on packages, so we need to handle

ABI etc in package names, not via

RPM's sophisticated assembly

dependencies

● Works for us – but needs extra care

taken to avoid problems

Is dpkg or RPM inherently
better?

What has 9 years told us?

● Get it right, or it'll bite you down the

line

● All the weird things we do come from

experience.

What “weird stuff?”

● Chop everything into teeny pieces

● Build the world against only ONE classlib

● Override the compiler in the build system

● Use funny package names and install

locations

● Strip all your useful things out of source

tarballs

mono.tar.bz2 and its 103
children

● Almost one package per

assembly

● Only required

assemblies ever

installed

Does that REALLY help?
● openSUSE 11.3

● GNOME desktop

● Mono removed

● 3.6 gig used

● Ubuntu 10.10

● GNOME desktop

● Mono removed

● 2.9 gig used

Does that REALLY help? pt2
● 3.6 gig used

● +70.1M for

Tomboy

● 2.9 gig used

● +22.7M for

Tomboy

Does that REALLY help? pt3
● 3.6 gig used

● +38.0M for

gbrainy

● 2.9 gig used

● +21.3M for

gbrainy

Does that REALLY help? pt4
● 3.6 gig used

● +70.1M for

Banshee

● 2.9 gig used

● +41.0M for

Banshee

Does that REALLY help? pt5
● 3.6 gig used

● +76.0M for all 3

● 2.9 gig used

● +49.8M for all 3

Does that REALLY help?
Clearly.

33% better? You guys are
unbeatable!

Notice how Banshee was
huge compared to the

others?

What does Banshee need
that the others don't?

WCF? System.Web? Bollocks.

Stuff in blue & red? Throw
Gabriel Burt at them!

Result?
● Banshee:

41.0M → 31.5M

● All three:

49.8M → 40.6M

47% sm
aller th

an openSUSE!

Holy crap!

Building the world against
2.0

● If an app uses 2.0, and a lib uses 1.0, you

need two copies of many libs

● So rebuild all 1.0 libs with gmcs

● Works great

Single classlib downsides
● 1.0-only non-distro apps

need a hug to run

● Can no longer build 1.0

apps using distro libs (but

we keep core Mono 1.0

libs available)

mcs, gmcs, dmcs, and mono-
csc

● C apps use “gcc”, not “gcc-3.4” or

“gcc-4.3”

● Makes it easy to rebuild the world

● Mono didn't have this

● mcs for 1.0, gmcs for 2.0, dmcs for

4.0

● Except on 2.8.x where mcs is 2.0

Wait, mcs changed?

● It gets better...

● “al” was 1.0, now 4.0. See also

“resgen”

● An old 1.0 app using “mcs” and

“resgen” during build will break on

2.8+

● We predicted and avoided this in our

2.0 package (November 2008)

The Debian solution

● al1, al2, where al is a symlink to default

● resgen1, resgen2, where resgen is a symlink to

default

● etc

● mcs, gmcs, where mono-csc is a symlink to

default

● Was meant to be just “csc”, but Chicken

Scheme Compiler took it first

So how does that help
rebuilds?

● Update symlinks in “mono” package

to be 4.0, not 2.0

● No-change rebuild of, e.g., F-Spot

● Finished. Nap time!

Late breaking news (2011-01-
20)

● Mono 2.10 now has a master

compiler command, “mcs”, which

can target anything. It's based on

IKVM.Reflection

● Yay

What else?

● Package names include the

ABI

● But you compile against an

API, not an ABI

● For easy rebuilds, we need

unversioned “devel”

packages

An example

● If FooBarSharp produces FooBar.dll

2.3, it goes in libfoobar2.3-cil

● If it comes with a pkg-config file

foobar-1.0.pc, it goes in libfoobar1.0-

cil-dev

● Consumer app just build-depends on

mono-devel and libfoobar1.0-cil-dev

An example pt2

● FooBar.dll goes into /usr/lib/cli/FooBar-2.3/

● GAC links are done at install time by dpkg

● Install-time gacinstall allows installing into

multiple runtimes' GAC

● Portable.NET (lulz), or parallel install Mono in

/opt. Or a Linux port of .NET Micro! Whatevs. We

don't judge.

-cil? Huh?

● .NET™ is a

trademark

● Non-Mono

frameworks might

happen

● So neutral term

from ECMA-335

used

Stripping tarballs

● Mono deployment

guidelines

recommend bundling

binary copies of 3rd

party libs in your

source releases

No no no no no no no no no.
● Binary bundles of OSS libs without source

or version are no different from closed-

source libs

● No guarantee the binary actually even

builds, or works

● No way to deal with security issues

● See HtmlAgilityPack in Mono

Bundle things, cause us strife

● Ever seen “+dfsg” in a package

version? It means we had to strip

non-Free content

● Even source bundles upset Debian

FTP Masters, due to security burden

● Massive source bundle is the only

reason Moonlight 2.x isn't in Debian

… so THAT weird stuff.

Still here?

The suck

● We're usually pretty slow at

packaging new Mono releases.

Especially major ones

● Largely a manpower issue – and right

now, the Debian 6.0 freeze doesn't

help

● Also, LOTS of debugging for every

release

The suck pt2
● New packages (including new binary packages

from existing source) can get blocked by Debian

FTP Master for over a month

● Just plan around it. There's not much alternative.

The suck pt3

● Debian releases very rarely, so the

included Mono versions need to last

years

● Packaging changes can make

backports difficult or impossible

● Price of progress!

Contrary to popular belief,
we don't...

● Split packages based on patents or

other crap

Contrary to popular belief,
we don't...

● Care about the lunatic fringe's

ramblings

We care about just one thing

● Making Mono apps available to our

users

● And doing the best damn job we can

● Millions of people have our packages

installed, so we're probably doing

something right

And above all else

● Ruby packaging in Debian is in deep

trouble due to upstream douchiness

● And next door's talk is “The Java

Packaging Nightmare”

● Good packages require a

responsive and helpful

upstream, which we have

Any questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

